

Advanced cementitious materials, MSE 420

Lecture 11: Concrete design

Dr. Beatrice Malchiodi 27 November 2024

Course Schedule

Wk#	Class date	Title	Lecturer
1	11/09/2024	Introduction/literature review	Prof. Karen Scrivener /Dr. Alastair Marsh
2	18/09/2024	Durability of cementitious materials	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation techniques for cementiitous materials	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	LCA - Life Cycle Analysis	Dr. Alastair Marsh
9	13/11/2024	Sustainability approaches for construction	Dr. Alastair Marsh
10	20/11/2024	LC3 - Limestone Calcined Clay Cement	Dr. Beatrice Malchiodi
11	27/11/2024	Concrete design	Dr. Beatrice Malchiodi
12	04/12/2024	Concrete saving through a better structural design / Q&A on Presentation 3	Porf. David Ruggiero
13	11/12/2024	Presentation 3	
		08:15-09:00 Precast concrete, Sustainability in Concrete and Building Codes	Prof. David Fernandez-Ordoñez
14	18/12/2024	09:10-09:50 Circularity: Reuse of concrete elements	Prof. Corentin Fivet
		09:50-10:00 Semester projects at LMC	

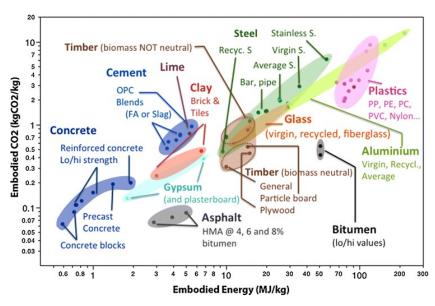
Learning objectives

By the end of this class, you will be able to...

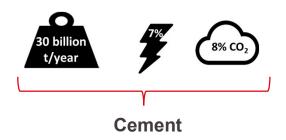
- Define how concrete is made and which parameters affect its property.
- Identify the main desired and required properties of concrete.
- Identify the main factors that enable a reduction of the carbon footprint in concrete.
- **Establish** mix design strategies to meet the specified requirements for concrete with the lowest amount of embodied CO₂.

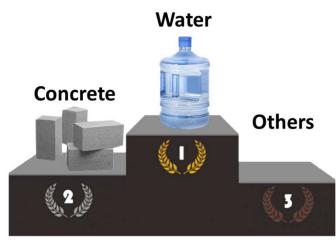
Background and Carbon footprint

Concrete is everywhere around us



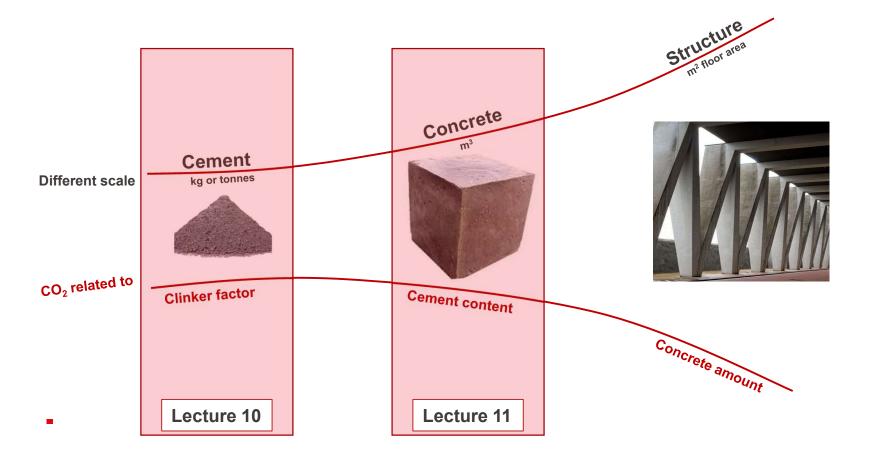
Why do we use concrete as a construction material?




Barcelo, L., Kline, J., Walenta, G. et al. Cement and carbon emissions. *Mater Struct* 47, 1055–1065 (2014).

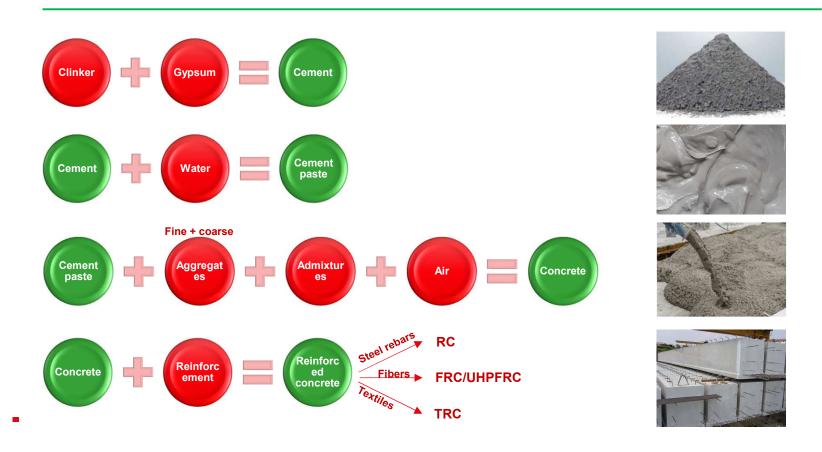
As a consequence...

- We use a lot of it -> that's why it has a high environmental impact despite its relatively low environmental impact.
- There is still significant space for improvement in terms of embodied CO₂ content.

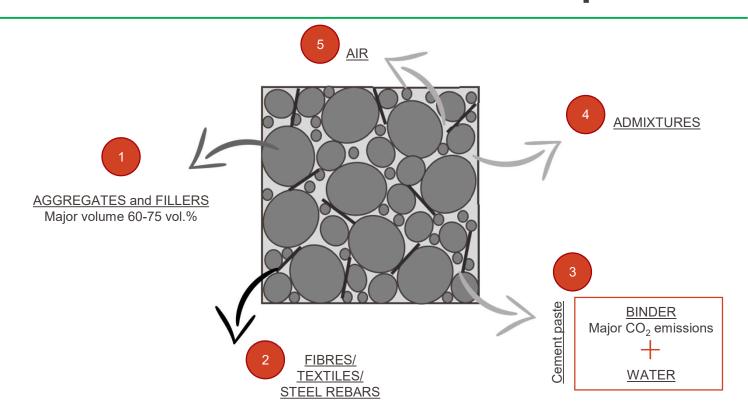


Ranking of most used materials

Embodied carbon at different scales



Concrete design



Review of basic definitions

Review of reinforced concrete components

Aggregates

Function:

Skeleton (60-75 vol.%), Reduce price (x5 less than cement) Reduce cement content (packing) Limit cracks and shrinkage

Requirements:

EN 12620

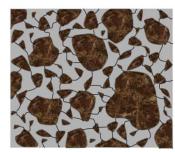
Properties:

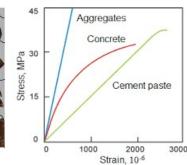
Nature (natural / recycled)

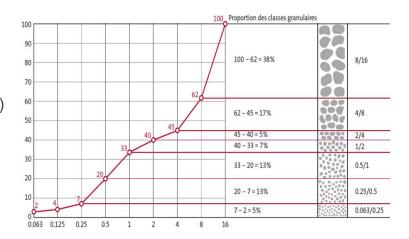
Origin (river, lake, quarry, recycled concrete aggregates, ..)

Mineralogy of the rock (sedimentary, metamorphic, vulcanic..)

Shape (round/cubic)

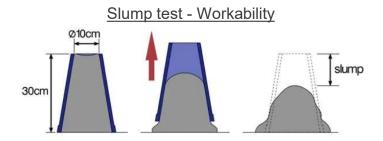

Shape index

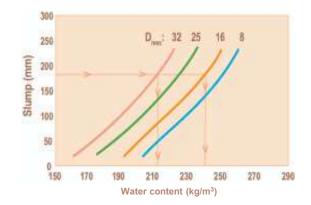

Flakiness index

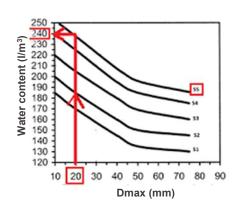

Texture (smooth/rough)

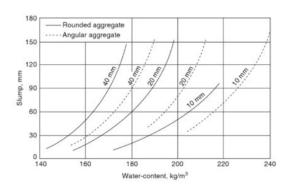
Size and fractions 0/4, 4/8, 8/16, 16/32, 32/64, 64/128 mm

Impurities (should be clean!)





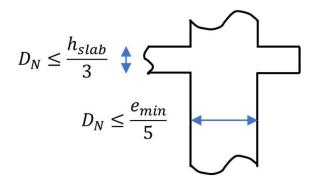



Aggregates

Aggregate size and shape: Affect concrete workability (Slump) Affect water content

Choice of the maximum size of aggregate (D_N).

D_N is limited by:


Size of the element

Spacing between rebars

Min spacing between stirrups and formwork

FIBERS / TEXTILE / STEEL REBARS

If we see reinforced concrete as a composite material:

- Concrete is the matrix
- Fibers/fabrics/rebars-stirrups are the reinforcement

Function:

Provide tensile and shear, so bending strength

Post-pone the failure

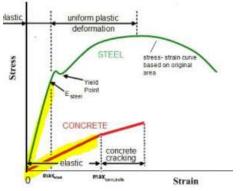
Ductile failure mode

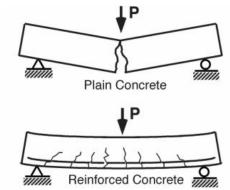
Redistribution of stresses and cracks

Properties:

Diameter size (µm to cm)

Material (steel, PP, carbon, glass, ..)


Texture (smooth, rough, improved adhesion)



Stress-strain diagram for steel and concrete

EN 197-1

CEMENT PASTE (BINDER+WATER)

Function:

Bonding aggregates (around 30 vol.%)

Develop hydration (chemical prop.)

Develop mechanical resistance (mechanical prop.) Provide workability at fresh state (rheology prop.)

Requirements:

Cement type and SCMs-EN 197-1

Properties:

Reactivity and heat of hydration

Particle size distribution

Cost

Microstructure, permeability (durability)

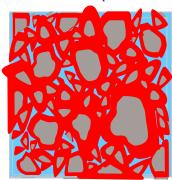
Content (w/b ratio, workability, bleeding,

segregation, compaction)

Main constituents		Composition (p	ercentage by mass ^a)	
	26 22	Main constitu	uents	

						Cor	nposition (p	ercentage l	oy mass ^a)			
				25			Main consti	tuents					
Main types	Notation of the 27 products (types of common cement)		Clinker	Blast-fur- nace	Silica	Pozzolana		Fly ash		Burnt	Limestone		Minor addi-
9,000				slag	fume	natural	atural cal-	siliceous	calca- reous	shale			uents
			к	S	Dp	Р	Q	V	w	Т	L	LL	
CEMI	Portland cement	CEMI	95-100	-	-	-		-	-		==	-	0-5
	Portland-slag	CEM II/A-S	80-94	6-20	-	-	1	-	(-)	-	-	-	0-5
	cement	CEM II/B-S	65-79	21-35	120	-		==	-	-	= 1	_ =	0-5
	Portland-silica fume cement	CEM II/A-D	90-94	-	6-10	-	3	=	-	-	=	-	0-5
	Portland-pozzolana cement	CEM II/A-P	80-94	-	-	6-20	-	-		100	-	-	0-5
		CEM II/B-P	65-79	_	-	21-35	-	-	-	8-8	= "	_	0-5
		CEM II/A-Q	80-94		-	-	6-20	- 4	-	-	= 1		0-5
		CEM II/B-Q	65-79	_	-	-	21-35	_	-	-	_	_	0-5
	Portland-fly ash cement	CEM II/A-V	80-94	-		-	-	6-20	-		-	-	0-5
CEM II		CEM II/B-V	65-79	-	1-1	-	- 1	21-35	-	55 - 5	-	-	0-5
		CEM II/A-W	80-94	= 1	-	102	40	==	6-20	(F=1)	= 2	_	0-5
		CEM II/B-W	65-79	= 1	2.5	-	211		21-35	1921	== [_	0-5
	Portland-burnt	CEM II/A-T	80-94		-			-	-	6-20		-	0-5
	shale cement	CEM II/B-T	65-79	-	-	-		-	1-1	21-35	-	-	0-5
	Portland-	CEM II/A-L	80-94	-	(+0)	-		-	- 1	-	6-20	-	0-5
	limestone	CEM II/B-L	65-79	=	20	8928	25	2	-	122	21-35	_ =	0-5
	cement	CEM II/A-LL	80-94	_	-	-	-	_	-	-	-	6-20	0-5
	Cernent	CEM II/B-LL	65-79		-		-	-				21-35	0-5
	Portland-composite	CEM II/A-M	80-88	(12-20)	0-5
cement ^C CEM II/B-M			65-79	(21-35)	0-5
	Blast furnace	CEM III/A	35-64	36-65	-	-		-	-	-	-2	_	0-5
CEM III	cement	CEM III/B	20-34	66-80	150		-	=		0.50		-	0-5
	Comon	CEM III/C	5-19	81-95	-	-	-	-	-	()-(-	-	0-5
CEM IV	Pozzolanic	CEM IV/A	65-89	- 1	<		11-35		->	-	= "	_	0-5
CLIMITY	cement ^C	CEM IV/B	45-64		<		36-55		->	-	2	_	0-5
CEM V	Composite	CEM V/A	40-64	18-30		<	18-30	>				-	0-5
OLIN V	cement ^C	CEM V/B	20-38	31-49	-	<	31-49	>	-	-	-	-	0-5

CEMENT PASTE (BINDER+WATER)


Function of water:

Hydration (it continues until water is available) Development of strength over time Workability and consistency

Concrete does not dry, it becomes hydrated! (chemical reaction between cement and water which forms hydrates).

Water is combined in hydrates (1 vol. solids -> 2 vol. hydrates)

Hydrates fill the space Cement grains dissolve Cement + water (after mixing)

CEMENT PASTE (BINDER+WATER)

Higher water content or w/c ratio:

Better workability

Easier casting/compaction

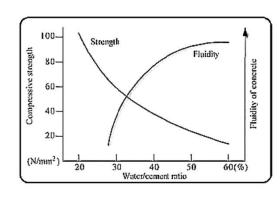
Higher porosity

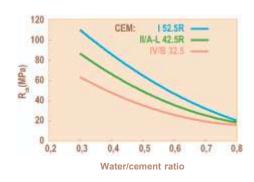
Risk of segregation/bleeding

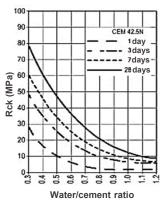
Lower strength

Lower water content or w/c ratio:

Poorer workability


More difficult casting/compaction


Lower porosity


Lower risk of

segregation/bleeding

Higher strength

CHEMICAL ADMIXTURES

Different function (as from ASTM 494/C494M-17):

Water reducing admixtures

Retarding admixtures

Accelerating admixtures

Water-reducing and retarding admixtures

Water-reducing and accelerating admixtures

Water-reducing, high-range admixtures

Water-reducing, high-range, and retarding admixtures

Specific performance admixtures

Different chemical composition

Most important use in concrete:

control workability without increasing w/c ratio while keeping performances

Refer to Lecture 6, 16th Oct: Chemical admixtures for concrete

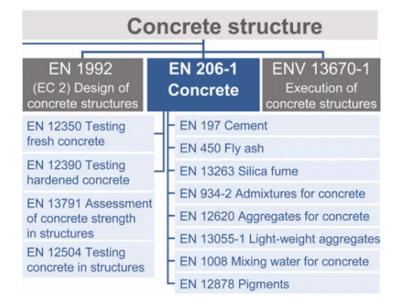
Concrete design

"The ingredients of good concrete are very simple: water, cement, sand, aggregates, mineral additions and chemical admixtures.

However, the ingredients of bad concrete are essentially the same.

The difference lies in the know-how and the understanding".

Neville, properties of concrete, 1996


STANDARD PRESCRIPTIONS

Every single component in concrete must meet some requirements prescribed by standards.

Here is the total set of European standards in concrete construction which takes into consideration the interfaces between design and construction, concrete composition and manufacture, as well as the execution of concrete structures.

Different standardization levels.

C. Müller 2012, Use of cement in concrete according to European standard EN 206-1

STANDARD PRESCRIPTIONS

At the concrete and structural level, for a given exposure class Standards prescribe:

Minimum strength class, Minimum water/cement (w/c) or water/binder (w/b) ratio, Minimum cement content Minimum cover depth

Guide for the concrete mix design! High safety factors, safe design. But also a limitation to CO₂ emission (see later)

Requirements for carbonation exposures	in	various standards.	
--	----	--------------------	--

Standard	Exposure Class	Exposure	Minimum 28 day Strength MPa	Max. $w/(c + k(SCM))$ or $w/(c + SCM)$	Min. Cement Content kg/m ³	Minimum Curing Period days	Minimum cover depth mm
EN206	XC1	Dry or permanently wet	C20/25	0.65	260	a	25°
	XC2	Wet, rarely dry	C25/C30	0.60	280	a	35°
	XC3	Moderate humidity	C30/C37	0.55	280	a	35°
	XC4	Cyclic wet and dry	C30/C37	0.50	300	a	40°
ACI 318	Not Covered	If also exposed to freezing, unsaturated	27.6	0.55	-	7	50
CSA A23.1	Not Covered	If also exposed to freezing, unsaturated	25	0.55	-	3	40 ^d
AS3600 ^b	A2	Moderate Humidity	25	-	-	3	45
	B1	Tropical	32	-	-	7	40
	B1	Cyclic wet and dry	32			7	40
GB/T50476	I-A	Indoor, Dry < 60% rh	25	0.60	260	3	20
(China) 50 y design life	I-B	Sheltered, Outdoor or Indoor, humid	30	0.55	280	3	20
	I-C	Outdoor, exposed to Rain	35	0.50	300	3	30***

R. Douglas Hooton 2019, Future directions for design, specification, testing, and construction of durable concrete structures

CONCRETE DESIGN

Iterative workflow.

Decision-making process.

Standards-driven process but with a margin of choice.

The mix design of concrete is strictly dependent on structural design. (Location, exposure, strength class required, required slump).

TRIAL BATCHING and ADJUSTMENT

w AND c:

- -> <u>Total V aggregates</u> -> <u>Aggregate grading</u>
- -> Vi aggregates

EXPOSURE CLASS+ STRENGTH CLASS

- -> type of cement
- -> w/b ratio
- -> binder content

LOCATION

- -> Exposure class
- -> Variable loads (earthquakes, snow, wind etc.)

USE OF THE STRUCTURE

(residential, industrial, hospital, school, bridge)

-> Permanent Variable loads

STRUCTURE TYPE

(frame structure, wall structure, geometry, floors, etc.)

-> Permanent Static loads

TOTAL LOADS ON THE STRUCTURE

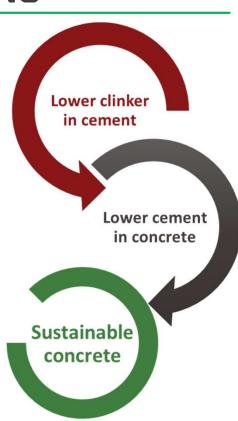
-> Strength class

DESIRED SLUMP

- -> Max. aggregate size
- -> Mixing water + air

CONCRETE DESIGN - GOALS

The main goal of concrete mix design is to provide certain qualities of interest:

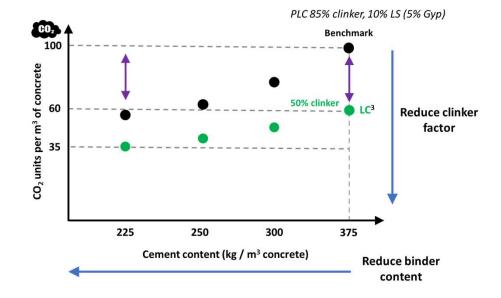


SUSTAINABILITY CONSIDERATIONS

Embodied CO₂ of concrete comes from clinker (850 kg CO₂ / ton of clinker)!

How to reduce the clinker content in concrete, thus making concrete more sustainable???

- Reduce the amount of clinker in cement by incorporating SCMs (use blended cements), while retaining or improving performance.
- 2. Reduce the amount of cement per cubic meter of concrete, while retaining workability, strength and durability.



SUSTAINABILITY CONSIDERATIONS

How to reduce the clinker content in concrete, thus making concrete more sustainable???

- 1. Reduce the amount of clinker in cement by incorporating SCMs (use blended cements).
- 2. Reduce the amount of cement per cubic meter of concrete

SUSTAINABILITY CONSIDERATIONS

Only achievable if the concrete mix is designed correctly.

Technological and engineering approach.

Some useful parameters to control to achieve sustainability:

- 1. Select the slump
- 2. Select the max. size of aggregate and aggregate grading
- 3. Select the mixing water and air
- 4. Select w/b
- 5. Select binder type (blended cements)

1. LOWEST SLUMP

The slump is specified by the contractor/field engineer and measured by ASTM C143-143M-20. If not specified, ACI 211.1-91 provides reference values.

Requirement: Concrete needs to flow and fill the spaces between rebars (without segregating).

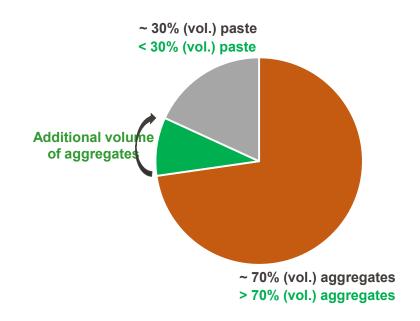
Lower slump -> lower water dosage -> lower binder content (at constant w/b).

Solution for sustainable concrete: Use the lowest slump possible that meets the requirements of the project!

*can be increased using admixtures

Type of	Slump	(mm)
construction	Max.*	Min.
Foundations (reinforced)	75	25
Foundations (plain)	75	25
Beams and walls	100	25
Columns	100	25
Pavement and slabs	75	25

Placing issues (honeycomb)

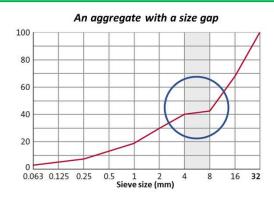

2. BEST GRADATION and LARGEST D_N

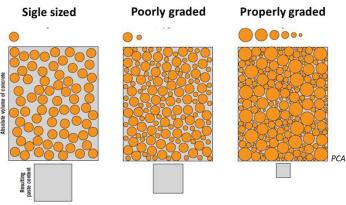
Cement paste is a lubricant between aggregates enabling flow. It coats and separates aggregates.

Increase the volume of aggregate -> reduce paste volume as much as possible.

Possible by:

- 1. Optimizing the aggregate gradation
- 2. Increasing the maximum size of aggregates


2. BEST GRADATION and LARGEST D_N

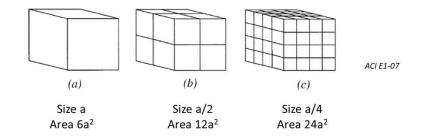

Optimizing the gradation of aggregates provide:

- Smooth and no-gaps- granulometric curve (packing density or void content of combined aggregate fractions).
- Filling the space between large aggregates with fine aggregates (fillers).
 - ->Only the small gaps that cannot be taken by fine aggregates remain to be filled with cement paste.

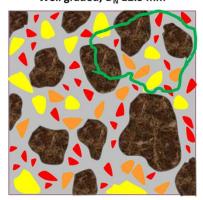
Solution for sustainable concrete:

Use the best gradation possible to lower voids!

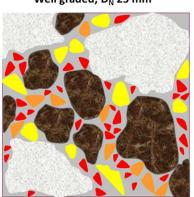
Volume of remaining space


2. BEST GRADATION and LARGEST D_N

Increasing the maximum size of aggregates D_N.


- Reduces surface/volume ratio -> lower amount of paste (binder) to coat the surface of aggregates.
- Reduces the void content between aggregates -> lower amount of paste (binder) required to fill the voids.

Solution for sustainable concrete: Use the largest D_N available that is technically/economically feasible.


Size effect on surface area (at constant volume)

Well graded, D_N 12.5 mm

Well graded, D_N 25 mm

3. MIXING WATER

At constant w/b ratio, water content is directly proportional to cement content.

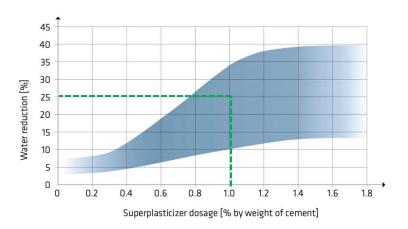
Higher slump -> higher mixing water dosage (at constant binder content - higher w/b at constant w/b - higher cement content)

Higher D_N -> lower mixing water dosage at constant slump (and lower entrapped air)

Solution for sustainable concrete: Reduce the water content to reduce cement content.

Table A1.5.3.3 (ACI 211.1-91, for well-graded angular aggregates)

	Water, kg/m	3 of concrete for	or indicated no	minal maxim	um sizes of
Slump, mm	9.5 mm*	12.5 mm*	19 mm*	25 mm*	37.5 mm
		Non-	air-entrained	concrete	
25 to 50	207	199	190	179	166
75 to 100	228	216	205	193	181
150 to 175	243	228	216	202	190
Approximate amount of entrapped air in non-air-entrained concrete, percent	3	2.5	2	1.5	1



3. MIXING WATER

Chemical admixtures can enable to achieve certain properties (slump, early-age strength, shrinkage) and reduce the embodied ${\rm CO_2}$ content.

Use chemical admixtures in the form and dosage recommended by the manufacturer

Solution for sustainable concrete: Use chemical admixtures to reduce water demand (reduce w/b) and so cement content.

Reducing CO₂ by using SP, exercise:

Hypothesis:

Water demand: 200 kg/m³

 $CO_{2,eq} PC = 0.82$

 $CO_{2,eq}^{2,eq}$ SP = 1.88 (EFCA EPD)

Cost PC = CAD 150 / ton (Statista, 2020 value)

Cost SP = CAD 13 / m³ (Canadian building materials, pricelist 2021)

No SP Water = 200 kg /m³ W/c = 0.45 PC = 444 kg /m³ Binder = \$ 54.6 Water = 150 kg /m³ W/c = 0.45 PC = 333 kg /m³ SP = 3.3 kg /m³ (2.1 L/m³) Binder = \$ 53.9

$$CO_{2EQ}$$
 PC = 364 kg/m³ CO_{2EQ} PC = 273 kg/m³ CO_{2EQ} SP = 6.2 kg/m³ CO_{2EQ} = 279.2 kg/m³

4. WATER/BINDER RATIO

Max w/b is prescribed by Standards and depends on:

- · Min. strength class to achieve
- Exposure class (durability)

Max w/b vs compressive strength depends on cement type! (Slide 19) -> Same strength target – different cement types – different w/b ratios

Solution for sustainable concrete:

Not always obvious which w/b allows for more sustainable concrete. Depends on strength and durability requirements!

Reducing CO₂ by using different w/b ratios, exercise:

25 to 50 75 to 100

Approximate amount of entrapped air in non-air-entrained concrete, percent

Hypothesis:

Target slump: 100 mm

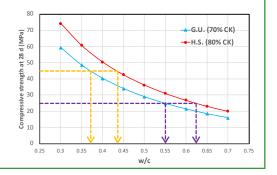
Two target strengths:

- 25 MPa
- 45 MPa

Two cement types:

- General use, 70% clinker
- High strength, 80% clinker

Water for D_N 25 mm = 193 kg/m³


Clinker content (cement content)?

Case 1, 25MPa

Cement type	w/b	Clinker (kg/m³)	CO ₂ (kg/m³)
GU	0.55	246	202
HS	0.62	248	203

Case 2, 45MPa

Cement type	w/b	Clinker (kg/m³)	CO ₂ (kg/m ³)
GU	0.37	365	299
HS	0.43	357	292

Water, kg/m3 of concrete for indicated nominal maximum sizes of agg

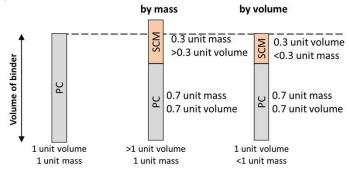
Non-air-entrained

25 mm*

193

9.5 mm* | 12.5 mm* | 19 mm*

5. SCMs


Solution for sustainable concrete: Use of SCMs to reduce clinker in the binder.

$$(Cement + SCMs) = \frac{water}{w/b}$$

Warning: SCMs have lower densities than OPC

Portland cement (3.0 < ρ < 3.1) Fly ash (2.0 < ρ < 2.6) Natural pozzolans (2.4 < ρ < 2.7) Calcined clays (2.2 < ρ < 2.6) GGBFS (2.7 < ρ < 2.9)

->Be aware of the proportioning approach! by mass vs by volume

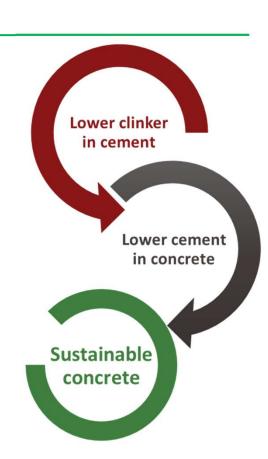
Proportioning of LC³-50 (55% OPC, 30%CC, 15%LS), **exercise**:

by mass:
$$\rho PC = 3.0 \\ \rho CC = 2.5 \\ \rho LS = 2.7 \\ \text{Tot. mass} = 100 \text{kg}$$

$$V_{100PC} = \frac{100}{\rho_{PC}} = 33.3 \, lt \\ V_{LC^350} = \frac{55}{\rho_{PC}} + \frac{30}{\rho_{CC}} + \frac{15}{\rho_{LS}} = 35.9 \, lt \\ \Delta V = \frac{35.9}{33.3} = 1.08 \rightarrow +8\%$$

Same w/b (by mass) But more vol. paste

Less vol. water to coat all the particles – workability issues -> use SPs


by volume:
$$\rho PC = 3.0 \\ \rho CC = 2.5 \\ \rho LS = 2.7$$
 Tot. volume = 1 It
$$M_{100PC} = \rho PC \ x \ 1 = 3 \text{kg}$$

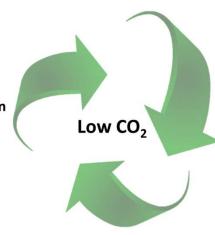
$$M_{LC^350} = (\rho PC \ x \ 0.55) + (\rho CC \ x \ 0.30) + (\rho LS \ x \ 0.15) = 2.80 \text{Kg}$$

$$\Delta M = \frac{2.8}{3} = 0.93 \ \rightarrow -7\%$$

$$\frac{\Delta w}{b} = \frac{w}{0.93 \ b} = +7\%$$

Same cement paste (by volume) But higher w/b

The golden rule is to develop (blended) cements with the least amount of embodied CO₂ that have sufficient performance to enable their use without a significant increase in binder content per m³


A sustainable concrete conceived this way is also cost-effective!

Aggregates

- Get the best (packed) aggregate gradation
- Use the largest D_N feasible

Chemical admixtures

 Consider the use of (super)plasticizers to reduce the water demand (specially with some SCMs)

Use of SCMs

- Reduce the clinker factor of the binder
- Account for performance vs CO₂

Avoiding the overdesign of concrete is another effective an necessary strategy to save CO2:

- 1. Design for the **lowest slump** that is technically feasible for the application
- 2. Do not over-specify strength for applications where is not needed
- 3. Be practical and realistic in assigning **exposure classes** to concrete

Final remarks that can be considered depending on the specific scenario:

- 1. Use locally available SCMs
- **2. Optimize**, optimize, optimize. Even saving 10 kg/m³ of clinker make a difference in a project with millions of cubic meters.

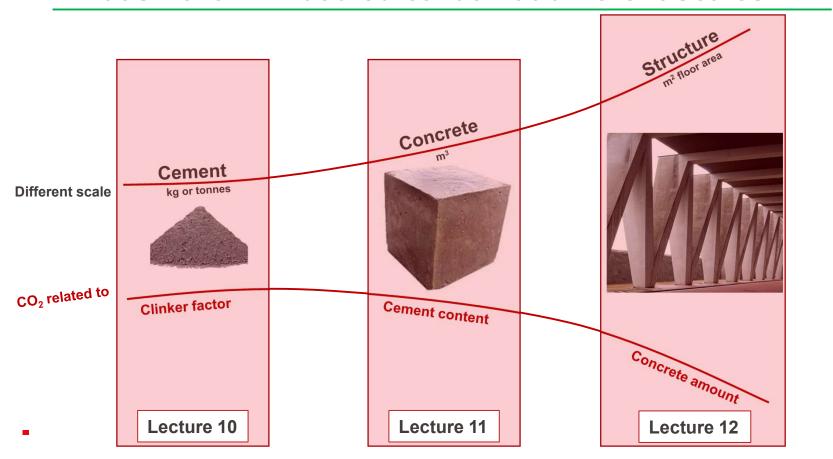
The binder with the lowest amount of clinker will not always lead to the lowest embodied CO₂ content. Depends on:

- Strength vs w/b ratio (lower strength binder requires lower w/b to meet f'c)
 For a given water content, lower w/b implies more cement per m³.
- Rheological performance of the binder (how much water do I need to achieve slump?)
 If I'm forced to increase the water content, I need to increase the cement content to keep w/b. Can I control it with admixtures?
- Durability performance (can I meet the exposure class requirements?)
 Some cements will not be allowed, or will lead to requirements of repair/replacement

Additional resources

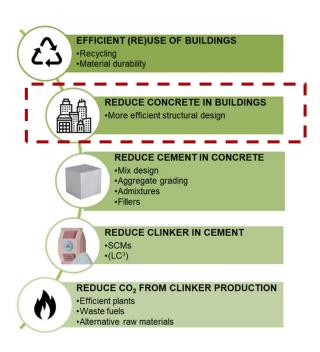
- ACI PRC 211.1-91: Standard practice for selecting proportions for normal, heavyweight and mass concrete
- ACI Education Bulletin E1-07: Aggregates for concrete
- ACI 318M-19 Chapter 19: Concrete design and durability requirements
- UNEP Report "Eco-efficient cements: potential economically-viable solutions for a low-CO₂ cement-based materials industry", available at https://wedocs.unep.org/handle/20.500.11822/25281
- Cheung et al., Admixtures and sustainability, Cement and Concrete Research, V.114 (2018), pp. 79-89
- Featured RTL paper on "ultra-green concrete" (stay tuned during the year).

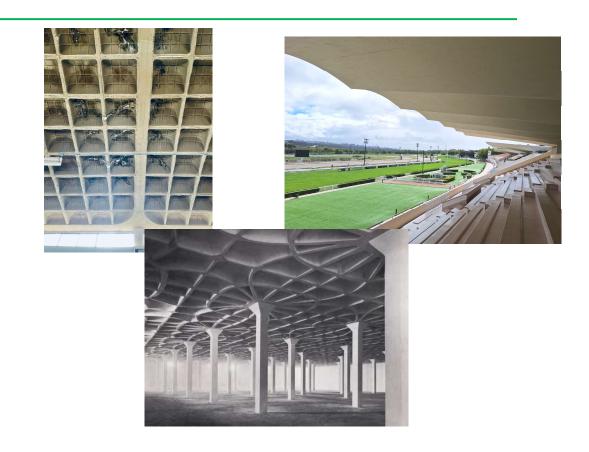
Learning objectives


Now, at the end of this class, you are able to...

- **Define** how concrete is made and which parameters affect its property.
- Identify the main desired and required properties of concrete.
- Identify the main factors that enable a reduction of the carbon footprint in concrete.
- Establish mix design strategies to meet the specified requirements for concrete with the lowest amount of embodied CO₂.

Always design in a durable and sustainable way!




What's next? Embodied carbon at different scales

WHAT'S NEXT?

Course Schedule

Wk#	Class date	Title	Lecturer
1	11/09/2024	Introduction/literature review	Prof. Karen Scrivener /Dr. Alastair Marsh
2	18/09/2024	Durability of cementitious materials	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation techniques for cementiitous materials	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	LCA - Life Cycle Analysis	Dr. Alastair Marsh
9	13/11/2024	Sustainability approaches for construction	Dr. Alastair Marsh
10	20/11/2024	LC3 - Limestone Calcined Clay Cement	Dr. Beatrice Malchiodi
11	27/11/2024	Concrete design	Dr. Beatrice Malchiodi
12	04/12/2024	Concrete saving through a better structural design / Q&A on Presentation 3	Porf. David Ruggiero
13	11/12/2024	Presentation 3	
		08:15-09:00 Precast concrete, Sustainability in Concrete and Building Codes	Prof. David Fernandez-Ordoñez
14	18/12/2024	09:10-09:50 Circularity: Reuse of concrete elements	Prof. Corentin Fivet
		09:50-10:00 Semester projects at LMC	

Questions?

Advanced cementitious materials, MSE 420

Lecture 11: Concrete design

Dr. Beatrice Malchiodi 27 November 2024